

"PIERO CALDIROLA" INTERNATIONAL CENTER FOR THE PROMOTION OF SCIENCE and International School of Plasma Physics

INTERNATIONAL WORKSHOP ON IMAGING

Villa Monastero, Varenna, Italy September 4 – 8, 2017

Sponsorship:

Monday, 4 September

gistration

10.00 *Coffee*

10:30 Welcome

BIOMEDICAL IMAGING

Chairman: Marco Paganoni

10:45	01.1	EU strategy for bioimaging infras	tructure Silvio Aime
11:30	01.2	CERN and biomedical imaging	Manuela Cirilli
12:15		Group photo	
12.30		Lunch	
Chairman	: Maria Co	arla Gilardi	
14.30	02.1	Segmentation of Biomedical imag	ges Elisabetta De Bernardi
15.00	02.2	Quantification of biomedical imag	ges in oncology/neurology Francesca Gallivanone
15.30	02.3	Machine learning in image analys	sis Christian Salvatore

- **16:00** *Coffee*
- 16.30 O2.4 X-ray phase contrast imaging: an extraordinary tool for structural and functional biomedical investigations *Alberto Bravin*
- 17.00 O2.5 Image Guided and Adapt Radiotherapy: the key to success *Pietro Mancosu*
- **17:30 POSTER SESSION**
- **19.30** Welcome Reception at Hotel Royal Victoria

Tuesday, 5 September

IMAGING FOR CULTURAL HERITAGE, HOMELAND SECURITY, ENGINEERING

Chairman:

09.00	03.1	Multi-scale imaging	Koen Janssens
09:45	03.2	Non-invasive in situ spectrosco radiation X-ray techniques for the artists' pigments	opic methods and synchrotron e study of the alteration process of
		artists pignicits	Letizia Monico
10.30		Coffee	
11:00	03.3	Neutrons for CH	David Mannes
11:30	03.4	Photoluminescence microscopy	Austin Nevin
12:00	03.5	Micro-analyses of artistic materia	ls at ESRF Marine Cotte
12:30		Lunch	
Chairman:			
14.45	04.1	Applications of muon tomography	Paolo Checchia
15:30	04.2	X-ray microtomography for cultu	ral heritage <i>Raffaele Giuseppe Agostino</i>
16:00	04.3	Some examples of imaging for eng	gineering Vincenzo Formoso
16:30		Coffee	
17:00	POS'	TER SESSION	

18:45 Concert and Reception at Villa Cipressi

Wednesday, 6 September

TRAINING ON SOFTWARE FOR IMAGING

Chairman: Anders Kaestner

09:00	T5.1	Anders Kaestner	CT Fundamentals
09:45-12:45	Train	ing session I	
10.30		Coffee	
12.45		Lunch	

Chairman: Alessia Cedola

14:45	T6.1	Alessia Cedola	Beyond CT
15:30-18:30	Traini	ng session II	
16:30		Coffee	
18.30		End of session	

TRAINING SESSION

Introduction to computed tomography

Anders Kaestner

Neutron Imaging and Activation Group, Paul Scherrer Institut, Switzerland

In many scientific applications, it is important to observe the contents of a sample without cutting it into pieces. Computed tomography (CT) offers a method to non-destructively acquire three-dimensional information representing the spatial distribution of different materials in the sample. It is an indirect measurement that requires the acquisition of projection data that is reconstructed into the volume of the sample. The reconstruction is an inversion operation that is solved using either algorithms based on the analytical solution or iterative methods that finds the material distribution. CT can be performed using different radiation types like X-rays and neutrons to observe different characteristic features in the sample.

In this lecture, we will provide you the background to understand the steps needed to successfully reconstruct a set projections into a volume data set. Questions like these will be answered:

- What is the importance of a good geometry description?
- How does the acquired dose affect signal to noise ratio?
- How many projections are needed?
- Which artifacts can be observed in a reconstructed image and how can they be removed?

We will also give a short overview of open source tool that can be used to process imaging data. This lecture will be the starting point for the practical exercises where you will reconstruct CT data.

Introduction to phase constrast tomography

Alessia Cedola

CNR- Institute of Nanotechnology, Rome-Italy

Classical X-ray radiography and tomography are based on absorption and are well-known tools for imaging the internal structure of thick objects with hard X-rays. In the study of low-absorption materials (like biomedical samples) and in particular when details with small differences in density must be detected (as in the structure of the grey and white matter of the spinal cord and brain), the significant degree of attenuation in the sample makes producing a detectable contrast very difficult. In these cases, a better contrast can be achieved by imaging the phase modulation induced by an object in a coherent or partially coherent beam.

Moreover, tomography provides the additional benefit of discriminating the different depths within the sample and providing a 3D sample reconstruction. Several experimental approaches exist for detecting X-ray phase contrast. A simple yet effective phase-contrast method for hard X-rays is based on in-line imaging after free-space propagation.

In this lecture, we will provide you the background to understand the X-ray phase contrast imaging principles of the most used phase contrast techniques. We also provide you a brief description of the phase retrieval algorithms.

Different advanced applications, in the medical field and in the cultural heritage will be shown.

Phase retrieval and tomography reconstruction in free-space X-ray Phase Contrast Tomography

Alessia Cedola CNR- Institute of Nanotechnology, Rome-Italy

CNR- Institute of Nanotechnology, Rome-Italy

We will give a short overview of open source tools for the reconstruction of phase contrast imaging data in free-space mode, 3D reconstruction and 3D rendering. This lecture will be the starting point for the practical exercises to reconstruct XPCT data.

A set of raw-data acquired in free-space X-ray phase contrast tomography will be provided to the students together with some open source tool. The student will train to the final data analysis.

Thursday, 7 September

HYBRID TECHNOLOGIES, NANOSCALE

Chairman:

09:00	O7.1 Multi-mode imaging: neutrons and	X-ray Anders Kaestner
09:45	O7.2 Technological advances and multin	nodality in MRI Alessandra Retico
10.30	Coffee	
11.00	O7.3 - X-ray Imaging at the Nanoscale	Peter Cloetens
11.30	O7.4 – Nanoanalysis	Sylvain Bohic
12.00	O7.5 Neuron imaging	Gabriele Biella
12.30	Lunch	

NEW IMAGING APPLICATIONS

Chairman: Alberto Bravin

14:30	08.1	Range monitoring in particle th	erapy Piergiorgio Cerello
15:00	08.2	Consciousness and complexity	: from theory to practice Simone Sarasso
15:30		Coffee	
16:00	08.3	Quantum Imaging	Marco Genovese
16.30	08.4	Industrial X-ray microtomogr questions in biology	aphy for answering Jozef Kaiser

17:50 Boat trip and banquet dinner

Friday, 8 September

OUTLOOK: IMAGING FACILITIES: LARGE AND SMALL

Chairman: Giuseppe Gorini

09:30	09.2	Future of neutron imaging	Manuel Morgano
10:00	09.3	Laboratory and synchrotron i illumination X-ray phase-cont	implementations of edge trast imaging <i>Marco Endrizzi</i>

10.30 *Coffee*

Chairman: Marco Endrizzi

11:00 O9.4		Liquid-metal-jet sources	for high-resolution x-ray phase-contrast
		imaging	Hans Hertz
11:30	09.5	Imaging at synchrotron so	ources: state-of-the-art and what will the
		new sources bring	Kajmuna Wokso
12:00	O9.6	STAR	Riccardo Barberi
12:30		Final Discussion	
13:00		Meeting ends	

POSTERS

Number	Presenter	Institution	Title
P.1	A. Pacureanu	European Synchrotron Radiation Facility, ID17, Grenoble, France	Label-free three-dimensional imaging of biological tissue at the nanoscale
P.2	D. Micieli	Dip. di Fisica, Universitá della Calabria & Dip. di Fisica "G. Occhialini", Università degli Studi Milano- Bicocca, Italy	A comparative analysis of state-of- the-art reconstruction methods applied to Neutron Tomography
Р.3	M. Fratini	Istituto di Nanotecnologia- Laboratorio di Soft and Living Matter, CNR, Rome, Italy & IRCCS Fondazione Santa Lucia Rome, Italy	X-ray Phase-Contrast multiscale- Tomography for the 3D quantitative investigation of the spinal cord neuronal arrangements for preclinical application
P.4	E. Longo	Laboratoire d'Optique Appliquée UMR7639, ENSTA-CNRS-Ecole Polytechnique- Université Paris-Saclay, Palaiseau, France	3D map of theranostic nanoparticles distribution in several mice samples by means X- ray Phase Contrast Tomography
Р.5	N. M. Boulton	Idaho National Laboratory 2525 Fremont ave., Idaho Falls, ID. 83402, USA	Commissioning of the NDDL-40 Neutron Detection System at Oregon State University
Number	Presenter	Institution	Title
Р.6	J. Ströbel	Department of Physics, Ludwig Maximilians University, Munich Germany	Sub-micron X-ray phase contrast holo-tomography of human osteoarthritic cartilage

P.7	G. Scionti	Università della Calabria Arcavacata di Rende (CS), Italy	MCNPX simulations for the evaluation and shielding of the gamma background on CCD and CMOS sensors for IMAT
P.8	A. Hewat	NeutronOptics Grenoble, 8 Allée des Pampres, 38640 Claix, FRANCE	Choice of CCD & CMOS Detectors for X-ray AND Neutron Imaging
Р.9	C. Gramaccioni	Dept. of Physics Univ. of Cosenza, Arcavata di Rende (Cosenza), Italy & CNR-Nanotec c/o Dept. of Physics Univ. Sapienza, Rome, Italy	Nanotomography and X-Ray Fluorescence Microscopy for quantitative Iron concentration map in inflamed cells
P.10	L. Massimi	CNR – Istituto di Nanotecnologie Rome, Italy	X-Ray Phase-Contrast Tomography Investigation of Neurodegeneration in Animal Models
Number	Author	Institution	Title
P.11	L. Arcidiacono	CENTRO FERMI - Museo Storico della Fisica e Centro Studi e Ricerche Enrico Fermi, Rome, Italy	Time resolved prompt gamma activation analysis from epithermal neutrons applied to gold coins of archaeometric interest
P.12	M. Tesařová	CEITEC BUT Brno University of Technology Brno, Czech Republic	Quantitative 3D analysis at cellular resolution with X-ray microtomography
P.13	D. Di Martino	Dip. Fisica "G. Occhialini", Università di Milano-Bicocca, Milan, Italy	Neutron imaging and diffraction study of ancient iron tie rods
P.14		STFC, Rutherford Appleton Laboratory, ISIS Facility, Harwell,	Towards high-resolution neutron

P.15	A. Mittone	European Synchrotron Radiation Facility, ID17, Grenoble, France	Phase contrast imaging of eyes: a study of feasibility
P.16	C. Cavinato	Mines Saint Etienne, CIS-EMSE, SAINBIOSE, F-42023 Saint Etienne & 2. INSERM U1059, SAINBIOSE, F-42023 Saint-Etienne, France	In situ investigation of Adventitia fibrous microstructure coupling multi-photon confocal microscopy and bulge inflation test
Number	Author	Institution	Title
P.17	J. Kaiser	CEITEC BUT, Brno University of Technology	Implementation of industrial X-ray microtomography for answering questions in biology
P.18	G. Vitucci	University of Milano Bicocca, Dept. Phys., 20125 Milan, Italy	Investigation on image distortion due to MCP electronic readout misalignment and correction via customized GUI application.
P.19	E. Stefanutti	Fondazione S. Lucia, Via Ardeatina 306 00179 Roma, Italy	Multimodal approach for the 3D investigation of the murine spinal cord and brain neuronal and vascular networks
P.20	L. Maugeri	Fondazione S. Lucia, Via Ardeatina 306 00179 Roma, Italy	Study of the spinal cord and brainstem functional activation in response to a controlled motor task using fMRI
P.21	N.C. D'Amico	CDI Centro Diagnostico Italiano S.p.A.	Radiomics and machine learning in the prediction of response to Cyberknife radiosurgery for acoustic neurinoma: a pilot study